

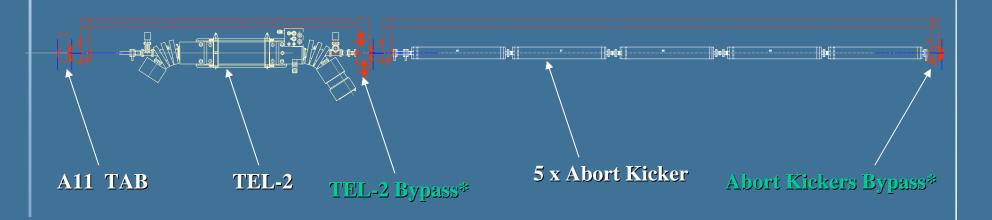
Tevatron Electron Lens II CRYOGENICS

Arkadiy Klebaner
AD/Cryogenic Department

Goal of Cryogenic Work

Provide cryogenic service to TEL-2 at minimal cost while maintaining current or better efficiency of the Tevatron cryogenic system.

Cryogenic Design Considerations


- TEL-2 Heat Leak
- Affect of the String Temperature Profile
- TEL-2 quench implications
- TEL-2 controls and instrumentation
- Minimize number of new components

CRYOGENIC LAYOUT

• Working with Mike McGee, AD/MS on the final beamline layout

Conceptual layout

* - New Components

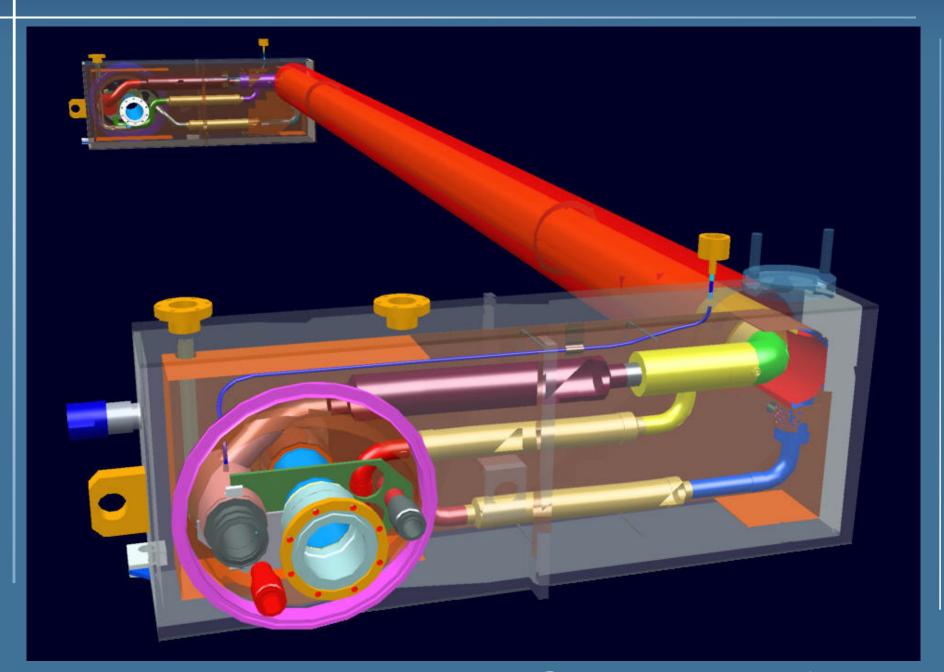
Scope of Cryogenic Work

 Design and Construction of Non-magnetic Cryogenic Elements

- ★ Abort Kicker Bypass
- **#** TEL − 2 Bypass
- ₩ *U-tubes*
- Instrumentation and Controls for the TEL-2
 - **♯ Power Leads Flow Controls and Instrumentation**

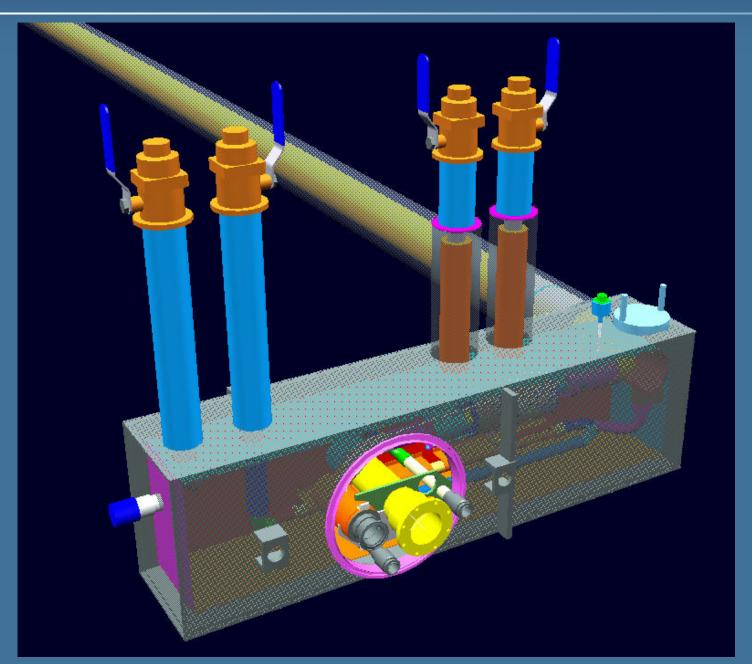
Helium and Nitrogen Headers Modification

■ Extend or reroute headers to support new and moved components



Current Design Status

Device	Solid Model	Details	Parts List
Abort Kicker Bypass	100%	80%	0%
TEL-2 Bypass	80%	80%	0%
Helium and Nitrogen Headers	-	-	0%
Controls	-	-	0%



Abort Kicker Bypass Solid Model

TEL – 2 Bypass Solid Model

Engineering and Design Group

COST*

Item Description	M&S [k\$]	AD Labor [FTE m-year]
TEL –2 Bypass	25	0.5
Abort Kickers Bypass	25	0.5
U-tubes	5	0.2
Controls and Instruments	5	0.3
Total	60	1.5

^{* -} No spares are included

SCHEDULE

- Bypasses Design Completed March 2005
- ◆ Bypasses Construction Completed July 2005
- ◆ U-tubes Construction Completed July 2005
- ◆ Installation next Tevatron Shutdown

RISK ANALYSIS

Risk	Mitigation
High TEL-2 heat leak	Identical to TEL-1 design. Extra cryogenic capacity is available.
Increased J-T inlet temperature	TEL-2 bypass serves as single-phase to two-phase heat exchanger.
Component design errors	Based on existing Tevatron component design.
Availability of existing personnel resources	Long-term planning of departmental resources.
Installation scheduling	Departmental and overall project planning. Installation shutdown planning.